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Abstract
Closed-form analytical expressions and asymptotic results are obtained for the
density distribution in Fourier space of harmonically trapped fermion gases
at zero and nonzero temperatures in d dimensions. The result is applied to
weakly interacting Fermi gases and to the elastic scattering from atomic nuclei.
The Fourier transform of the momentum density for a d-dimensional harmonic
confinement is also found.

PACS numbers: 03.75.Ss, 05.30.Fk, 73.21.La

1. Introduction

The experimental realization of trapped and cooled quantum gases [1, 2], to the regime where
the quantum effects of quantum statistics such as the shell structure in the single particle
density profile can be observed, has motivated a series of theoretical studies [3–10]. In this
work we shall limit ourselves to the case of the harmonic oscillator confining potential, since
most experiments are performed in harmonic traps [11].

Let us recall some basic concepts, in an arbitrary dimension d, concerning a degenerate
system of N independent particles in a potential V (r) = 1

2mω2r2, with r2 = x2
1 + · · · + x2

d .
The one-particle state is specified by a set of quantum numbers {n1, . . . , nd}, its energy being
εn = h̄ω(n + d/2) with n = n1 + · · · + nd . The spatial wavefunction �(x1, . . . , xd) =
ϕn1(x1)ϕn2(x2) · · · ϕnd

(xd) is the product of the one-dimensional normalized wavefunctions
ϕn(x) = exp(−α2x2/2)Hn(αx)(α/(2nn!

√
π))1/2, where Hn are Hermite polynomials and

α = (mω/h̄)1/2. At zero temperature, and if the particles completely fill (M + 1) oscillator
shells, the spatial one-particle density is defined as

ρ(d)(r,M) = 2
M∑

n=0

∑
n1+···+nd=n

∣∣ϕn1(x1) · · · ϕnd
(xd)

∣∣2
. (1)
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From now on, the superscript (d) stands for the dimensionality of the space. Here the factor 2
accounts for a spin degeneracy but note that, in the case of spin polarized fermions or spinless
bosons, such a factor should be dropped. In the ground state the number N of particles is
related to the quantum number M by

N = 2

(
M + d

d

)
. (2)

For the density ρ(d)(r,M) given in equation (1), several authors have obtained exact closed
analytical expressions at zero temperature in one dimension [3, 4, 6, 12] and at higher
dimensions [5, 7]. Note that, in the asymptotic limit of large particle numbers, analytical
results have also been found [5, 10]. In the present work we shall be concerned with the
Fourier transform of the particle density distribution in a d-dimensional harmonic trap, a
problem that may find application in optical detection [13]. In the one-dimensional case,
the analytical expression of the Fourier transform of the particle density has been shown
by Gleisberg et al [4] to have a very simple analytical form. In the next section we shall
derive an exact analytical expression as well as the asymptotic result for the density profile in
Fourier space in arbitrary dimensions. Then, in section 3, we will extend our analysis to finite
temperature. Two physical applications will be presented in section 4: the case of a weakly
interacting Fermi gas and the elastic scattering from atomic nuclei. In section 5, the Fourier
transform of the momentum density is also examined. Finally, the summary puts an end to
the paper.

2. The density profile in Fourier space

We start with the definition of the Fourier transform of the one-particle density ρ(d)(r) in d
dimensions, that is,

n(d)(k) =
∫

ρ(d)(r) e−ik · r dr. (3)

The inverse Fourier transform reads

ρ(d)(r) =
∫

n(d)(k) eik · r dk

(2π)d
. (4)

Note that if the spatial density is normalized such that N = ∫
ρ(d)(r) dr, equation (3) gives

n(d)(0) = N, (5)

and from equation (4) we can extract the density at the center of the trap, that is,

ρ(d)(0) =
∫

n(d)(k)
dk

(2π)d
. (6)

In [4] the relation∫ ∞

−∞
ϕm(x)ϕn(x) e−ikx dx =

(
− k2

2α2

)(n−m)/2 √
m!

n!
exp

(
− k2

4α2

)
Ln−m

m

(
k2

2α2

)
, (7)

which is satisfied by the wavefunctions ϕn(x) of the harmonic oscillator, is used to calculate,
in one dimension (d = 1), the integral in equation (3) for the density ρ(d)(r) given in
equation (1). The result obtained is

n(1)(k,M) = 2 exp

(
− k2

4α2

) M∑
m=0

Lm

(
k2

2α2

)
= 2 exp

(
− k2

4α2

)
L1

M

(
k2

2α2

)
, (8)
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Figure 1. Plot of the density profile in Fourier space n(d)(k,M) given in equation (12) as a function
of k = |k| for N = 240 particles. Three situations are shown: (a) the one-dimensional case d = 1
and M + 1 = 120 closed shells (solid line), (b) the two-dimensional case d = 2 and M + 1 = 15
closed shells (dashed line) and (c) the three-dimensional case d = 3 and M + 1 = 8 closed shells
(dotted line). Units are chosen such that α = 1.

where Ld
M(x) are the well known associated Laguerre polynomials. The summation relation∑M

n=0 Ld−1
n (x) = Ld

M(x) [14] is used to obtain this equation.
Let us now extend this result to higher dimensions, taking into account that the

multidimensional version of equation (7) is∫ ∞

−∞
e−ik1x1

∣∣ϕn1(x1)
∣∣2

dx1 × · · · ×
∫ ∞

−∞
e−ikdxd

∣∣ϕnd
(xd)

∣∣2
dxd

= exp

(
− k2

4α2

)
Ln1

(
k2

1

2α2

)
· · ·Lnd

(
k2
d

2α2

)
(9)

where k2 ≡ k2 = k2
1 + · · ·+k2

d . With the above result, using (1) and (3) the density n(d)(k,M)

becomes

n(d)(k,M) = 2 exp

(
− k2

4α2

) M∑
n=0

∑
n1+···+nd=n

Ln1

(
k2

1

2α2

)
· · · Lnd

(
k2
d

2α2

)
, (10)

and using the identity [14]∑
n1+···+nd=n

Ln1(x1) · · · Lnd
(xd) = Ld−1

n (x1 + · · · + xd) (11)

we then obtain the very compact form

n(d)(k,M) = 2 exp

(
− k2

4α2

) M∑
n=0

Ld−1
n

(
k2

2α2

)
= 2 exp

(
− k2

4α2

)
Ld

M

(
k2

2α2

)
. (12)

A simple test of equation (12) can be done as follows. If we evaluate n(d)(0,M) and since

Ld
M(0) = (

M+d
d

)
[14], the exact result given in equation (5) is obtained.

A plot of the density profile in Fourier space (12) is shown in figure 1 for N = 240, a
number of particles which completely fill M + 1 = 120, 15, 8 oscillator shells for d = 1, 2, 3,
respectively.

2.1. Asymptotic result for the density profile in Fourier space

In the following we present a simple analytical result for n(d)(k,M) at T = 0 in the limit of
large M � 1, which corresponds to the limit of a large particle number N. Such an asymptotic
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limit is easily obtained since in equation (12) appears only one associated Laguerre polynomial,
and therefore applying the asymptotic form [14]

La
n(y) ∼ 1√

π
ey/2y−a/2−1/4na/2−1/4 cos

(
2
√

ny − aπ

2
− π

4

)
, (13)

with y = k2/(2α2), n = M and a = d, to equation (12), one obtains

n(d)(k,M) ∼ 2d/2+5/4αd+1/2Md/2−1/4

√
πkd+1/2

cos

(
k

α

√
2M −

(
d

2
+

1

4

)
π

)
. (14)

Remark the oscillating behavior of n(d)(k,M), a fact that already appears, although not for big
values of k, in the curves of figure 1.

3. The density profile in Fourier space at finite temperature

In the following we shall derive the expression of the Fourier transform of the particle density
at nonzero temperatures. Using the grand canonical ensemble, the one-particle density,
in coordinate space, of a noninteracting fermion gas in a d-dimensional harmonic trap at
temperature T, is simply given by

ρ
(d)
T (r) = 2

∞∑
n=0

f (n)
∑

n1+···+nd=n

∣∣ϕn1(x1)ϕn2(x2) · · · ϕnd
(xd)

∣∣2
, (15)

where

f (n) =
[

exp

(
εn − µ

kBT

)
+ 1

]−1

(16)

are the Fermi–Dirac occupation numbers, with εn = h̄ω(n + d/2) and µ the chemical
potential. Equation (15) is the generalization to finite temperature of equation (1). It should
be noted that closed analytical expressions for the density (15) have been obtained [8, 9].
Let us now come to the density profile n

(d)
T (k) in Fourier space at nonzero temperatures. Its

calculation is entirely analogous to the zero temperature case, the main difference here being
that we cannot eliminate the summation over the entire energy spectrum. Using obvious
notations, one finds

n
(d)
T (k) = 2 exp

(
− k2

4α2

) ∞∑
n=0

Ld−1
n

(
k2

2α2

)
1

exp
(

εn−µ

kBT

)
+ 1

. (17)

Putting k = 0 in equation (17) and using the fact that n(d)
T (0) = N , we obtain the normalization

condition from which the chemical potential µ can be obtained, that is,

N = 2
∞∑

n=0

Ld−1
n (0)

exp
(

εn−µ

kBT

)
+ 1

. (18)

Here, the physical meaning of Ld−1
n (0) = (

n+d−1
d−1

)
is nothing but the degeneracy of the nth

energy level.
Although the derivations of equations (12) and (17) for arbitrary dimensions are simple,

to our knowledge, they seem not to have been reported before in the literature except, as
previously mentioned, the result given in equation (8) for the case d = 1 at T = 0. In what
follows, we will show that the Fourier transform of the particle density has a relevant role in
some physical applications.
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4. Applications

4.1. Weakly-interacting Fermi gas

A nearly ideal Fermi gas composed of atoms cooled down to a fraction of the Fermi temperature
has been achieved experimentally [1, 11]. Such ultracold atomic gas constitutes a dilute system
in which the interparticle interactions are weak and readily treated theoretically. Here, we
propose to calculate, to the first order of perturbation theory, the total interaction energy term
of a very dilute, weakly-interacting Fermi gas. Such a cloud is supposed to be confined by a
spherical harmonic trap in d dimensions and the atoms are supposed to interact via a two-body
attractive delta interaction.

Let us consider the Hamiltonian of the N fermion atoms of mass m of the form

H =
N∑

i=1

(
p2

i

2m
+

1

2
mω2r2

i

)
+ Vint, (19)

where

Vint = g
∑
i<j

δ(ri − rj ). (20)

Here the index i labels the particles and g is the coupling constant of the two-body zero range
interaction. In the following we will calculate the total interaction energy in the mean-field
Hartree–Fock theory. Let |�〉 denote the ground state wavefunction of the hamiltonian H. The
expectation value, 	E

(d)
T =0 = 〈�|Vint|�〉 of Vint, represents the total interaction energy. In the

mean-field Hartree–Fock theory [15], where the state |�〉 is a Slater determinant, one has

	E
(d)
T =0 = g

4

∫ ∣∣ρ(d)
int (r)

∣∣2
dr = g

4

∫ ∣∣n(d)
int (k)

∣∣2 dk

(2π)d
(21)

where we have used the Parseval theorem. Here, ρ
(d)
int and n

(d)
int refer to the densities of the

full Hamiltonian (19). But if the system is very dilute (g � 1), we may use for these latter
densities the unperturbed expressions (the noninteracting ones) given in the previous sections.
Therefore, upon inserting equation (12) into (21), one obtains at zero temperature

	E
(d)
T =0 = g

∫
exp

(
− k2

2α2

) [
Ld

M

(
k2

2α2

)]2
dk

(2π)d
. (22)

Due to the spherical symmetry of the problem, we have dk = 2πd/2


(d/2)
kd−1 dk, with k�0. Then

equation (22) becomes

	E
(d)
T =0 = g

2πd/2


(d/2)

∫ ∞

0

kd−1

(2π)d
exp

(
− k2

2α2

) [
Ld

M

(
k2

2α2

)]2

dk

= g
πd/2αd2d/2

(2π)d
(d/2)

∫ ∞

0
ud/2−1 e−u

[
Ld

M(u)
]2

du (23)

where we have made the change of the variable u = k2/(2α2). If we use [14]

Ld
M(u) =

M∑
n=0


(d/2 + n + 1)

n!
(d/2 + 1)
L

d/2−1
M−n (u), (24)

the integral in (23) can be carried out analytically, to obtain

	E
(d)
T =0 = g

4αd

d2(2π)d/2
3(d/2)

M∑
n=0

(

(d/2 + n + 1)

n!

)2

(d/2 + M − n)

(M − n)!
, (25)
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where we have used the fact that the crossed terms of the double sum vanish due to the
orthogonality property [14]∫ ∞

0
e−uuqLq

n(u)Lq
m(u) du = 
(q + n + 1)

n!
δn,m. (26)

In two dimensions the analytical expression of equation (25) turns out to be very simple.
Indeed, from equation (25), one finds

	E
(2)
T =0 = g

α2

2π

M∑
n=0

(n + 1)2 = g
α2

12π
(M + 1)(M + 2)(2M + 3). (27)

In a similar way to that done for the T = 0 case, if we insert equation (17) into equation (21),
we will obtain, after some straightforward calculations, the following finite temperature version
of equation (25):

	E
(d)
T = gαd

(2π)d/2
3(d/2)

×
∞∑

n=0

n∑
m=0

∞∑
p=n−m

f (n)f (p)

(d/2 + m)
(d/2 + p − n + m)
(d/2 + n − m)

m!(p − n + m)!(n − m)!
, (28)

where f (n) is the occupation number given in equation (16). Now, let us write down the
above expression in the d = 2 case:

	E
(d)
T = g

α2

2π

∞∑
n=0

n∑
m=0

∞∑
p=n−m

f (n)f (p) = g
α2

2π

∞∑
n=0

( ∞∑
p=n

f (p)

)2

. (29)

It can be easily verified that, in the T → 0 limit, equation (29) reduces to its zero temperature
limit given in equation (27) since the Fermi distribution f (k) becomes the Heaviside step
function �(λ − k − d/2) , λ being the Fermi energy given for the case of M + 1 filled shells
by λ = M + d/2.

4.2. Elastic particle scattering from atomic nuclei

The Fourier transform defined in equation (3) is nothing but the so-called scattering form factor
F(k) ≡ n(k) and appears in the expression of the elastic differential cross section (dσ/d�).
For example, in the context of nuclear structure, the elastic scattering of electrons from atomic
nuclei are used to probe the nuclear charge distribution. In the Born approximation, and using
obvious notations, one has [16](

dσ

d�

)
=

(
dσ

d�

)
0

|F(k)|2 (30)

where (dσ/d�)0 is the point-like differential cross section, and k = ki − kf , with k, ki

and kf being, respectively, the transferred, the initial and the final momenta of the electron.
Despite its limitations the nuclear shell model using the three-dimensional harmonic oscillator
wavefunctions has been widely used to describe the light closed shell nuclei. Now, using the
result given in equation (12) with equation (30), one obtains(

dσ

d�

)
= 4

(
dσ

d�

)
0

e− k2

2α2

∣∣∣∣L3
M

(
k2

2α2

)∣∣∣∣2

. (31)

Hence, the differential cross section of the above problem is now expressed in a completely
analytical form and this result should be added to the short list of exactly solvable models in
scattering theory. From another point of view, this is also an interesting practical quantum
mechanical exercise for students.
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5. Fourier transform of the momentum density for d-dimensional harmonic
confinement

In the previous sections we have studied the structure of the Fourier transform n(d)(k) of
ρ(d)(r). Another interesting distribution function which has been introduced in [17] is the
Fourier transform ρ̃(d)(r) of the momentum distribution F (d)(p); the latter will be defined
below. It has been shown that ρ̃(d)(r) can be used to obtain the total kinetic energy, which is
an important ingredient in density functional theory [15, 18]. Such an alternative route to the
total kinetic energy is set out in [17]. Here we are only interested in the analytical form of
ρ̃(d)(r) in the case of harmonic confinement in d dimensions and at T = 0. We shall obtain a
simple analytical expression for such density which resemble to the form of n(d)(k) given in
equation (12). This is due to the symmetry on the interchange of the variables p and r in the
harmonic oscillator Hamiltonian.

For the case of the d-dimensional harmonic oscillator, the momentum distribution F (d)(p)

is defined by a similar relation to that in equation (1), where one has to convert the normalized
r space wavefunctions ϕnj

(xj ) into their analogues φnj
(pj ) in momentum space, that is,

F (d)(p,M) = 2
M∑

n=0

∑
n1+···+nd=n

∣∣φn1(p1) · · · φnd
(pd)

∣∣2
(32)

with ϕn(pi) = exp
(−β2p2

i

/
2
)
Hn(βpi)(β/(2nn!

√
π))1/2 is the one-dimensional harmonic

oscillator wavefunction in momentum space with β = (h̄α)−1 = 1/(h̄mω)1/2. Since the
analytical form for such a wavefunction is similar to the one in r space, following the same
derivation as given in section 1, we then obtain for the Fourier transform ρ̃(d)(r) of F (d)(p),

ρ̃(d)(r) =
∫

F (d)(p) ei p·r
h̄ dp, (33)

the simple form

ρ̃(d) (r,M) = 2 exp

(
−mωr2

4h̄

)
Ld

M

(
mωr2

2h̄

)
. (34)

6. Summary

In the present work, we have shown that the density profile in Fourier space for a d-
dimensional harmonically confined quantum gas has a simple closed form compared to its
r-space counterpart at zero and nonzero temperatures. Using such results, we have obtained,
to the first order in perturbation theory, a compact analytical expression for the total two-body
interaction energy of a very dilute weakly-interacting atom gas. These results may be useful
in the study of the radiation light scattered from harmonically confined quantum gases [19].
A simple application to elastic scattering theory is also done, showing an example where the
exact result for the differential cross section can be obtained.
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